Dynamic server allocation for unstable queueing networks with flexible servers

نویسندگان

  • Salih Tekin
  • Sigrún Andradóttir
  • Douglas G. Down
چکیده

This paper is concerned with the dynamic assignment of servers to tasks in queueing networks where demand may exceed the capacity for service. The objective is to maximize the system throughput. We use fluid limit analysis to show that several quantities of interest, namely the maximum possible throughput, the maximum throughput for a given arrival rate, the minimum arrival rate that will yield a desired feasible throughput, and the optimal allocations of servers to classes for a given arrival rate and desired throughput, can be computed by solving linear programming problems. We develop generalized round robin policies for assigning servers to classes for a given arrival rate and desired throughput, and show that our policies achieve the desired throughput as long as this throughput is feasible for the arrival rate. We conclude with numerical examples that illustrate the points discussed and provide insights into the system behavior when the arrival rate deviates from the one the system is designed for.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Hierarchical Location-Allocation Models for Congested Systems

There exist various service systems that have hierarchical structure. In hierarchical service networks, facilities at different levels provide different types of services. For example, in health care systems, general centers provide low-level services such as primary health care services, while the specialized hospitals provide high-level services. Because of demand congestion in service networ...

متن کامل

Load Balancing Approaches for Web Servers: A Survey of Recent Trends

Numerous works has been done for load balancing of web servers in grid environment. Reason behinds popularity of grid environment is to allow accessing distributed resources which are located at remote locations. For effective utilization, load must be balanced among all resources. Importance of load balancing is discussed by distinguishing the system between without load balancing and with loa...

متن کامل

Discrete Time Analysis of Multi-Server Queueing System with Multiple Working Vacations and Reneging of Customers‎

This paper analyzes a discrete-time $Geo/Geo/c$ queueing system with multiple working vacations and reneging in which customers arrive according to a geometric process. As soon as the system gets empty, the servers go to a working vacations all together. The service times during regular busy period, working vacation period and vacation times are assumed to be geometrically distributed. Customer...

متن کامل

Analyses of a Markovian queue with two heterogeneous servers and working vacation

This paper analyzes an M/M/2 queueing system with two heterogeneous servers. Both servers goes on vacation when there is no customers waiting for service after this server 1 is always available but the other goes on vacation whenever server 2 is idle. The vacationing server however, returns to serve at a low rate as an arrival finds the other server busy. The system is analyzed in the steady st...

متن کامل

Optimal Server Allocation in General, Finite, Multi-Server Queueing Networks

Queueing networks with finite buffers, multiple servers, arbitrary acyclic, series-parallel topologies, and general service time distributions are considered in this paper. An approach to optimally allocate servers to series, merge, and split topologies and their combinations is demonstrated. The methodology builds upon two-moment approximations to the service time distribution embedded in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Queueing Syst.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2012